
Finding Needles in Haystacks: Multiple-Imputation Record 
Linkage Using Machine Learning 

by 
 

John M. Abowd 
U.S. Census Bureau and Cornell University 

 
Joelle Abramowitz 

University of Michigan 
 

Margaret C. Levenstein 
University of Michigan 

 
Kristin McCue 

U.S. Census Bureau 
 

Dhiren Patki 
Federal Reserve Bank of Boston 

 
Trivellore Raghunathan 
University of Michigan 

 
Ann M. Rodgers 

University of Michigan 
 

Matthew D. Shapiro 
University of Michigan and NBER 

 
Nada Wasi 

Bank of Thailand 
 

Dawn Zinsser 
University of Michigan 

 
CES 21-35  November 2021 

 
The research program of the Center for Economic Studies (CES) produces a wide range of 
economic analyses to improve the statistical programs of the U.S. Census Bureau. Many of 
these analyses take the form of CES research papers. The papers have not undergone the 
review accorded Census Bureau publications and no endorsement should be inferred. Any 
opinions and conclusions expressed herein are those of the author(s) and do not necessarily 
represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no 
confidential information is disclosed. Republication in whole or part must be cleared with the 
authors. 
 
To obtain information about the series, see www.census.gov/ces or contact Christopher Goetz, 
Editor, Discussion Papers, U.S. Census Bureau, Center for Economic Studies 5K038E, 4600 Silver 
Hill Road, Washington, DC 20233, CES.Working.Papers@census.gov. To subscribe to the series, 
please click here. 

mailto:CES.Working.Papers@census.gov
https://public.govdelivery.com/accounts/USCENSUS/subscriber/new?topic_id=USCENSUS_11777


Abstract 
 

This paper considers the problem of record linkage between a household-level survey and an 
establishment-level frame in the absence of unique identifiers. Linkage between frames in this 
setting is challenging because the distribution of employment across establishments is highly 
skewed. To address these difficulties, this paper develops a probabilistic record linkage 
methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI 
methodology is applied to link survey respondents in the Health and Retirement Study to their 
workplaces in the Census Business Register. The linked data reveal new evidence that non 
sampling errors in household survey data are correlated with respondents’ workplace 
characteristics. 
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1 Introduction

Increasingly, researchers are interested in linking survey and administrative data for measurement
and analysis. In most record linkage applications, the units being linked originate from the same
frame. For instance, individuals in a given dataset are linked to the same individuals in a different
dataset, or businesses in one dataset are linked to the same businesses in another dataset. In
this paper, we consider the problem of linking across frames. We match individual respondents in
household survey data to administrative data on the universe of employers. How does one use a
household report of a business to link to the correct employer? It would be possible to build in these
linkages from the start, especially where a sampling frame is created from administrative data. In
that case, linkage is part of the design. This paper addresses the problem of linking individuals
and employers where the linkage is not pre-designed into a survey. This situation typically arises in
surveys of households, which are built from sampling frames of household addresses, often without
the purpose of linkage as part of the design. Even in an idealized world where the survey and
administrative frames were developed in tandem, additional linkages to other administrative data,
that are not part of the design, may be desirable.

We treat record linkage as a missing data problem where true match status is unknown and
must be imputed. To do this, we need to accomplish two related tasks. First, we need a way to
predict whether any given pair of records drawn from the two datasets constitutes a true match.
Second, we need a way to characterize uncertainty in the prediction of true matches and propagate
that uncertainty into inferences drawn from the linked dataset by subsequent analyses.

The task of predicting true match status is difficult because the size distribution of firms is very
skewed. Consider the striking empirical fact that 0.3 percent of all firms employ 53 percent of all
workers in the United States.1 There are however more than six million firms, so the flip side of this
fact is that most firms are very small. With so many small firms, matching individuals to employers
is inherently noisy because a large number of small employers among a set of potential candidates
are feasible matches for any given survey respondent. This is our needle in the haystack problem.
For example, imagine a set of candidate matches included a large insurance company, an indepen-
dent credit union at the same location using the name of the insurance company, and a cafeteria
operated by a third-party vendor also at the same location and using the name of the insurance
company. The names and address of the candidate matches are all similar. When presented with
this information, a human reviewer may use auxiliary information such as the respondents industry,
occupation, or reported firm size to guess the correct match. We automate and speed-up what a
human reviewer would do by using a supervised machine learning (ML) approach to predict the
matching firm. ML is particularly valuable for record linkage because it makes flexible use of a very
large number of predictors, including auxiliary information, to mimic the heuristics used by a hu-
man reviewer. Furthermore, relying on a rich set of predictors lends support to the assumption that
imputation errors are ignorable thereby improving inferences in subsequent analyses of the imputed

12018 Statistics of U.S. Businesses (SUSB), U.S. Census Bureau.
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data. Finally, our cross-validated ML estimator is tuned to deliver high out-of-sample accuracy.
Multiple imputation (MI) allows analysts to propagate match uncertainty when conducting

inference. For each record in household survey data, our procedure samples multiple candidates
from administrative employer-level data by using ML-based match probability estimates as weights.
In cases where the match probability estimates are highly concentrated, household survey records
are linked to just one employer. Conversely, for cases where the match probability estimates are
highly diffuse, household survey records are linked to many different employers. In the completed
(matched) dataset, variability between implicates for a given household survey record captures
uncertainty associated with the linkage for that household. Subsequent analyses of the completed
dataset can then combine the multiple implicates for valid statistical inference as in Rubin (1987).

In this paper we apply our novel combined ML-MI approach to record linkage to match the
Health and Retirement Study (HRS), a longitudinal household-level survey of older Americans, and
the Census Business Register (BR), an administrative dataset that covers the universe of employers
in the United States. This new linked household-employer dataset will provide researchers new ways
to investigate wide-ranging questions about the role of employer- and workplace-specific factors in
influencing wages, consumption and savings decisions, health outcomes, and retirement choices of
older workers. We re-examine the well-known positive gradient between hourly wages and workplace
size to provide an example of the type of analysis that the matched data can facilitate. We find
that both non-classical measurement error and selective non-response in the HRS survey reports of
workplace size generate upward bias in this gradient.

The plan of this article is as follows. Section 2 describes record linkage methodologies in deter-
ministic and probabilistic contexts. Section 3 provides details on the files that we link and explains
the three major steps of our record linkage procedure. Section 4 assesses the fit of our match
prediction model and evaluates the degree of uncertainty in our linkage. Section 5 illustrates an
application of the matched data to shed new light on the incidence and consequences of nonclassical
measurement error and selective nonresponse in household survey respondent reports of workplace
size. Section 6 concludes.

2 Essentials of Record Linkage

This paper builds on an important literature that developed widely-used techniques for record
linkage. The simplest approaches are non-probabilistic. In these deterministic file matching appli-
cations, researchers accomplish record linkage by isolating a set of variables that are common to a
given record in both files. This procedure constitutes both the first and the last step in the linkage.
It is the first step because it enumerates the set of possible matches. It is the last step because
only those records that have exactly one match conditional on variable agreement are retained. In
some instances, a sufficiently rich set of accurately measured variables can allow a large fraction of
the original file to be unequivocally matched (see, e.g., Lawson et al. (2013) and Setoguchi et al.
(2014)). In other cases, the matched file consists of a smaller and potentially non-random subset
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of the original file that limits the usefulness of the matched dataset for analysis. This concern is
highlighted in the context of linking historical data, for example, in Bailey et al. (2017).

The Fellegi and Sunter (1969) (FS) method is an early and widely-used probabilistic linking
approach that picks the best match from the set of multiple potential matches. In this method,
researchers estimate the probability that a particular characteristic (such as gender or first and last
name) agrees in the two files, given that the records should link (match) and given that they should
not link (non-match). To estimate match probabilities the FS method relies on the strong, and
sometimes untenable, assumption that the agreement status of each characteristic is independent
conditional on true match status. Next, the data are used to determine log odds cutoffs above
which potential matches are coded as true matches and below which they are treated as non-
matches. Potential matches that fall between the cutoffs are evaluated manually, a procedure which
has been criticized, for example, in Belin and Rubin (1995) because the error properties of manual
review are unknown, may be subject to inconsistent standards across reviewers, and may fail to
yield a substantial number of unequivocal matches.2

ML methods for record linkage constitute a growing alternative to the FS approach. These
methods estimate highly flexible non-parametric functions and classify record pairs into matches
and non-matches. For example, Cochinwala et al. (2001) and Elfeky et al. (2002) use decision trees
for classification while Christen (2008a) and Christen (2008b) rely on support vector machines. ML
approaches have been implemented with training data (supervised) and without it (unsupervised),
with the former typically yielding more accurate linkage (see, e.g., Christen (2008b)). The key
advantage of the ML-based record linkage approach is its high degree of accuracy. These imple-
mentations of ML create a deterministic classifier. Hence, like FS, existing ML-based record linkage
applications select the best match among a set of candidate matches. That is, conditional on the
matching algorithm, matches are treated as deterministic.

The Bayesian approach to record linkage characterizes uncertainty associated with parameters in
the linkage process (Fortini et al. (2001) and Larsen (2004)). In this method, researchers specify prior
distributions of parameters that govern the mixture of matches and non-matches that generate the
comparison vector of agreement status for variables observed in both files. Draws from the posterior
predictive distribution of the parameters are then used to produce estimates of pair-specific match
probability. One-to-one matching is enforced using the mode of the posterior predictive distribution
or by minimizing a loss function. Tancredi and Liseo (2011) refine this procedure by relying on
observed discrete matching variables rather than a comparison vector of agreement status for those
variables. Steorts et al. (2016) provide a method of linking multiple files, each with potentially
duplicated records, within the Bayesian framework. Gutman et al. (2013) and Gutman et al. (2014)
further develop the Bayesian approach by applying it to situations where variables used in the
linkage model are available in both files as well as variables available in only one file. Moreover,
they jointly model the linkage step as well as relationships between variables in the linked dataset

2While manual review of the entire set of blocked records has been adopted in some applications (e.g., Ferrie
(1996)), it is prohibitively expensive in many settings and remains subject to the same criticisms as the manual
review step of the FS method.
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(the analysis step). Then, by repeatedly sampling from the posterior distribution of the linkage step
parameters they generate multiple implicates of linked datasets that are used in the analysis step
and combined using the formulas in Rubin (1987). This procedure has the advantage of propagating
uncertainty in the linkage step parameters into the analysis step.

Work that is highly germane to the household-employer record linkage problem we consider in
this paper began as a part of the Longitudinal Employer Household Dynamics (LEHD) program
in two projects that were initiated in the early years of that effort. The first of these projects
linked employers to job histories in the 1990-1996 Surveys of Income and Program Participation
(SIPP).3 Abowd and Stinson (2013) evaluate this linkage and use it to compare self-reports and
administrative reports of earnings. The LEHD program also links establishments (i.e. specific
workplaces for a given employer) in the Quarterly Census of Employment and Wages, called the
Employer Characteristics File in LEHD, to individual workers via the state unemployment insurance
account number, called the SEIN in LEHD. This linkage starts with deterministic methods using
the SEIN. When these methods do not find a one-to-one match, a Bayesian posterior predictive
distribution is used to generate ten implicates linking establishments to the candidate worker’s
employment history (Abowd et al. (2009)).4 These ten implicates are used to associate workplace
characteristics to each worker history.5 The ten implicate threads are processed according to the
Rubin (1987) combining formulas to produce the Quarterly Workforce Indicators (QWI). McKinney
et al. (forthcoming) provide a complete assessment of the total variability in the QWIs due to the
MI and other edit procedures.

The methodology we develop relies on the accuracy of the ML approach to record linkage while
using MI to characterize uncertainty in the linkage and to propagate that uncertainty into subsequent
analyses. To our knowledge, this combination of methods has not been previously employed in record
linkage applications.6 Our ML approach allows us to leverage a very large number of predictors
to estimate match probabilities including both discrete and continuous observed variables from
either file as well as agreement status variables constructed using both files. Furthermore, the
flexibility inherent in this method accommodates rich complementarity between predictors and
allows us to dispense with the assumption that predictor variables are independent conditional
on true match status as has been posited in many prior applications. In addition, tuning our
prediction models to achieve high out-of-sample accuracy facilitates scalability and precision linkage
in a way that is difficult to achieve using Bayesian or FS methods. Finally, unlike prior ML-
based record linkage methods that use binary classification to select the single best match, the
ML model that we use provides a match probability estimate for each record pair. By using a

3This work also developed improved linkages within the 1990-1993 SIPP job histories, and integrated data from
the Census Business Register into the SIPP (Stinson (2003)).

4See Goldstein et al. (2012) for a similar approach applied to medical records.
5Other incomplete data in the LEHD infrastructure, such as incomplete data for education, are completed using

similar Bayesian methods.
6ML methods have been used to improve MI in applications that do not involve record linkage. See, e.g., Reiter

(2005) for the creation of partially synthetic public use microdata and Burgette and Reiter (2010) for missing variable
imputation.
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Bayesian bootstrap procedure (Rubin (1981)) to repeatedly sample candidate matches from the
estimated match probability distribution when constructing MI linkages, our procedure allows us to
approximate parameter uncertainty in the ML model while also characterizing uncertainty regarding
latent match status.

3 The Machine Learning, Multiple Imputation (ML-MI) Procedure

3.1 Overview

In this section, we describe our ML-MI record linkage procedure for matching household-level survey
data to establishment-level administrative data. Our approach acknowledges that many matches are
uncertain and is explicit about uncertainty at all steps. It produces a dataset of multiply-imputed
links that, if used appropriately, will allow analysts to produce statistics and inferences that account
for the uncertainty of matches.

We integrate machine learning and multiple imputation using the following steps. First, we
enumerate the set of candidate establishments that constitute feasible matches for each survey
report about a particular job using a technique known as blocking. Second, we create training data
for supervised ML. Third, we estimate an ML model nested within a weighted Bayesian bootstrap
(WBB), and use the model to obtain match probabilities for each candidate match. We then draw
an implicate using the match probabilities as weights when sampling among the candidates. This
step is repeated to create M implicates.

Our procedure accounts for match uncertainty in two ways. First, there is parameter uncertainty
in the ML model because it is based on finite data. Second, there is match uncertainty conditional
on the parameters because the probability distribution over potential matches is not degenerate.
Both types of uncertainty propagate through our procedure since the model is re-estimated and an
implicate is drawn using match probabilities as weights within each bootstrap iteration.

At the conclusion of this section, we describe how the multiply-imputed matches should be used
in analysis in order to propagate match uncertainty.

3.2 Dataset structure

Before delving further into the details of our methodology, we briefly describe the datasets that we
use in our application. The household survey that we use is the Health and Retirement Study (HRS)
that surveys more than 22,000 Americans over the age of 50 every two years. It is a large-scale
longitudinal project that studies the labor force participation and health transitions that individuals
undergo toward the end of their work lives and in the years that follow. About 70 percent of
HRS respondents give permission to the Social Security Administration (SSA) to provide earnings
records, which include Federal Employer Identification Numbers (EINs), to the HRS for purposes
of enhancing the HRS data infrastructure.7 In addition to EINs provided by the earnings records,

7For consenting respondents, in addition to earnings records, SSA provides retirement and disability benefit claims
data.
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the HRS elicits information about employer name, establishment address, and telephone number
for the respondent’s “main job” or the job about which a bulk of work-related survey questions are
asked. Respondent reports of employer identity and address are obtained at the survey baseline
(i.e., when new respondents are enrolled in the study, generally every six years when a new cohort
is added to the study) and in each subsequent wave if the respondent reports having changed jobs.8

We use EINs along with employer names and establishment addresses to match HRS respondents’
employers and workplaces to the Census Business Register (BR) which is the Census Bureau’s list
of essentially all establishments in the United States. Note that the establishment is the workplace,
and a given firm may operate many establishments. The BR contains information on EIN, employer
name and establishment address, company affiliation, size, payroll, industry classification and other
employer-level and establishment-level characteristics and can be linked to other Census Bureau
survey and administrative data.9 We refer to the dataset created by matching the HRS to the BR
and associated Census Bureau data as the CenHRS.

Our procedure has three cases for linking HRS jobs to the BR: deterministic match based on EIN
and probabilistic match with or without EIN. Table 1 shows these cases and their characteristics.

• In the first case, respondents consent to SSA linkages and can be deterministically matched
to an establishment in the BR. This case happens when the respondent has just one job (and
therefore just one EIN) in a given year and that EIN corresponds to exactly one establishment
in the BR.

• In the second case, respondents consent to SSA linkages, but cannot be deterministically
matched to an establishment in the BR. This case happens either because the respondent has
multiple jobs in a given year (and consequently has multiple EINs), or because the respondent’s
EIN does not uniquely identify an establishment in the BR, or both.

• In the third case, respondents do not consent to SSA linkages and therefore we do not have
their EINs.

For respondents in the second and third categories, which represent about 60 percent of our sample,
we implement probabilistic record linkage using ML and MI. In the next section, we discuss how
the availability of the EIN affects this procedure.

8The HRS collects employer names, establishment addresses, and phone numbers to contact respondents’ employers
about retirement benefit provisions.

9EINs are tax identification numbers; they do no uniquely identify establishments except in two special cases.
The first case is for employers that operate just one establishment (single-unit employers). The second case is for
employers that operate multiple establishments (multi-unit employers), have multiple EINs, and where a specific EIN
points only to one establishment. An example of the latter case would be if Dunder Mifflin Paper Company was a
two-establishment firm with one establishment located in Scranton, PA, and another in New York, NY, and if each
of those establishments had its own EIN.
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3.3 Procedure

3.3.1 Blocking

Let jobs in the HRS be indexed by i = 1, ..., NHRS. A job in the HRS is defined as a spell of
employment at a unique establishment. Let establishments in the BR be indexed by j = 1, ..., NBR.
If we start with the prior that every record in the BR is a potential match for each job in the HRS,
we would need to search over a set of NBR ×NHRS pairs. This set is of the order 106 × 104.

To reduce the dimensionality of the search problem, we follow a blocking strategy. Blocking
groups record pairs that share specific characteristics wherein pairs that agree on at least one
characteristic are regarded has having a positive probability of being matches, while pairs that fail
to agree on any characteristics are deemed as non-matches (see, e.g., Christen (2012)). That is, the
blocking strategy assigns zero probability to candidates outside of the block. If the block has only
one candidate, the linkage is deterministic. For HRS respondents who consent to SSA linkage, we
block on EIN. For HRS respondents who do not consent to SSA linkage, we block on 10-digit phone
number, 3-digit zip code, telephone area code, and city-state.10

3.3.2 Training data

The blocking variables we use strongly influence the level of ex-ante match uncertainty. Blocking on
EINs generates an average of about 400 candidate matches (i.e. unique establishments in the BR)
per HRS respondent. In contrast, blocking on location-specific variables generates about 30,000
candidate matches per HRS respondent and is therefore associated with a much higher level of
uncertainty. See Table 1. Hence, the relationship between predictors and match status varies
substantially based on whether the HRS-BR pair is blocked using EIN or not. We account for
these differences by creating two different training samples and train separate models: one based on
pairs blocked using EINs and the other based on pairs blocked without EINs. Each training sample
consists of NT ≈ 1000 randomly-selected HRS-BR unlabeled pairs. We oversample pairs with a
higher likelihood of being true matches using the data and methodology described in Appendix A.

We now specify the procedure for creating the training data by human review to label HRS-
BR pairs. Define xHi as a vector of individual demographic characteristics, employment-related
variables, self-reported employer characteristics, and survey paradata for HRS respondent i. Define
xBj as a vector of characteristics for establishment j drawn from administrative data in the BR. Let
k(ij) = 1, . . . , NT index HRS-BR pairs in each of the unlabeled samples. These data are examined
by reviewers who observe certain pair characteristics, xk, which are a subset of (xHi ,x

B
j ); Table

2 lists the elements of xk. Each HRS-BR pair is evaluated by two reviewers. Define yk,r = 1 if
reviewer r scores pair k as a match and yk,r = 0 otherwise. To the extent that they disagree, the
two reviewer assessments—i.e. the yk,r—reflect uncertainty about latent match status.11

10We do not model blocking uncertainty. For respondents who consented to SSA linkage, EINs come directly from
the SSA data (no uncertainty). For respondents who did not consent to SSA linkage, the blocking variables were
respondent provided. Accounting for uncertainty in these data is outside the scope of our current models.

11A total of seven reviewers conducted these reviews inside the Federal Statistical Research Data Center (FSRDC)
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For each HRS-BR pair in the unlabeled samples, reviewers consider employer and establishment
match status separately. An employer match means that the employer identity (e.g., Dunder Mifflin
Paper Company) in the HRS corresponds to the employer identity in the BR. In contrast, an
establishment match implies that, in addition to an employer match, the workplace reported by
the HRS respondent exactly corresponds to the physical location in the BR (e.g., Dunder Mifflin
Paper Company, 1460 Main Street, Scranton, PA). This distinction is important because workplace
characteristics can differ substantially even at different locations of a single employer. For example,
different establishments of a given employer may experience differential expansion or contraction,
produce different types of goods or services, or employ workers of different skill types or ages.
Consequently, we construct four different training datasets: employer match for EIN blocked pairs,
establishment match for EIN blocked pairs, establishment match for non-EIN-blocked pairs, and
establishment match for non-EIN-blocked pairs. In the employer match dataset, yk,r refers to
employer match status; in the establishment match dataset, yk,r refers to establishment match
status.

Once reviewers complete their assessments, each of the four training datasets can be represented
by the following matrix:

T =



y1,1 x1

y1,2 x1

...
...

yNT ,1 xNT

yNT ,2 xNT


. (1)

Because there are two reviewer (r ∈ {1, 2}) outcomes associated with each HRS-BR pair in the
training sample indexed by k(ij) = 1, . . . , NT , there are l(ij) = 1, . . . , 2NT rows in the training
data set T .

3.3.3 Estimating the ML model using weighted Bayesian bootstrap

We estimate the ML models using a set of variables that supplements the information observed by
reviewers (xl). The supplemented set of predictors is given by the vector x̃l(ij) = f(xl,x

H
i ,x

B
j )

where the function f(·) supplements and transforms observed data. Table 3 shows the elements of
x̃l(ij).

The first set of predictors are pair-specific. Cubic splines of Jaro-Winkler (JW) scores for
employer name and establishment address, and linear JW score for city jointly capture reviewers’
assessments of the similarity in the HRS and BR names and addresses.12 We include cubic splines of
the share of employment within the blocking variable accounted for by a candidate BR establishment
(or employment share). This variable accounts for the fact that individuals in household surveys are

computing environment.
12JW scores, which range from 0 to 1, combine edit distance and q-gram-based comparison techniques to measure

string similarity. The JW score for establishment address is based on the number and street and does not include
information on city, state, or zip code similarity.
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more likely to be employed at larger establishments for any given blocking schema. For EIN-blocked
cases, we also include cubic splines of the share of annual earnings accounted for by a candidate EIN
(or earnings share). When HRS respondents have multiple jobs, this variable aids in disambiguation
by accounting for the fact that the “main job”—which respondents provide answers about in survey
questions—is more likely to be associated with a larger share of total earnings. Finally, we include
variables measuring pair-specific agreement status for a number of characteristics: 7- and 10-digit
phone number, 3-, 4-, and 5- digit zip code, city-state, one-digit industry codes, and employer and
establishment size class. Some pair-level predictors, such as 10-digit phone agreement, can be highly
influential in predicting match probability, but it is very rare for candidate matches to share such
granular characteristics. On the other hand, sharing industry codes or 4-digit zip codes is more
likely but less predictive of a match.

The second set of variables comes purely from the BR and includes the log size of the employer
and whether the BR candidate match is a single-unit (SU) or multi-unit (MU) business.13 Size and
MU status variables are intended to capture the higher unconditional probability that individuals
in a household survey will be employed at larger, MU, employers.

The third set of variables comes purely from the HRS and includes the respondent’s age, gen-
der, race and ethnicity, education, nativity, marital status, survey interview mode (in person or
telephone), survey interview language (English or Spanish), log hourly real wage, years of tenure,
weeks worked per year, hours worked per week, whether the respondent’s employer provides health
insurance and/or a retirement savings plan, and the respondent’s two-digit occupation and one-digit
industry. We include these variables to control for job-specific determinants of match status as well
as the quality of identifying information about the employer and establishment reported by the HRS
respondent.14

To account for the fact that household survey respondents are more likely to be employed at
larger establishments, and at employers which provide a larger share of annual earnings, we fully
interact the cubic splines of name and address JW scores, employment share, and earnings share.15

Including this rich set of higher order interactions substantially increases the number of variables
we use to predict match likelihood. Combining HRS-BR pair-specific variables, variables only from
the BR, and variables only from the HRS, and all the interaction terms, we have a total of 9,200
predictors in the vector x̃l(ij).

Having defined the set of predictors, we use the logistic function to model match probabilities
as:

P (yl(ij) = 1|x̃′l(ij)) =
exp x̃′l(ij)β

1 + exp x̃′l(ij)β
. (2)

13SU businesses operate only one establishment, whereas MU businesses operate multiple establishments.
14We include information on health insurance and/or retirement plan provision because these variables are corre-

lated with employer size, which is often missing in the HRS.
15When EINs are unavailable, earnings share cannot be defined. For these cases, we interact JW scores for name

and address with cubic splines of log employer size from the BR.
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To approximate posterior uncertainty in β, we use weighted Bayesian bootstrap (WBB) (see, e.g.,
Rubin (1981), Newton and Raftery (1994), and Newton et al. (2021)). We construct m = 1, . . . ,M

WBB replications of each of the four training datasets by drawing k = 1, . . . , NT i.i.d. random
variates ν(m)

k from an exponential distribution with mean 1. The random weight associated with
HRS-BR pair k in the training data is w(m)

k = ν
(m)
k /ν̄(m), where ν̄(m) is the sample mean of the

ν
(m)
k . To account for pair-level clustering, each duplicated pair in the respective training datasets
receives the same weight.

Define the dimension of x̃l(ij) as q. Since q � 2NT , i.e., the number of predictors exceeds the
number of observations, we rely on the Elastic Net (EN) shrinkage estimator for model selection
and estimation of β (Zou and Hastie (2005)). The EN-based parameter estimate for the m-th WBB
replication is obtained by maximizing the constrained likelihood function:

β̂
(m)

= argmax
β∈Rq

2NT∑
l=1

w
(m)
l

(
yl log

(
exp(x̃′lβ)

1 + exp(x̃′lβ)

)
+ (1− yl) log

(
1

1 + exp(x̃′lβ)

))

+λ

q∑
p=1

(
α|βp|+ (1− α)β2p

)
. (3)

In Equation (3), l indexes observations in the training data, while p indexes predictors. w(m)
l is the

random weight attached to observation l in WBB replication m. The two tuning parameters, α and
λ, which either zero out or shrink the elements of β̂

(m)
, are estimated using 10-fold cross validation

to optimize out-of-sample predictive performance; see Appendix B for additional details. We plug
β̂
(m)

from the respective models (employer and establishment, EIN and non-EIN) into Equation
(2) to obtain an estimate of the probability that a human reviewer would regard an unlabeled i− j
pair as a match, which we denote by p̂(x̃ij ; β̂

(m)
).16 We iterate this WBB step M = 10 times.

Our match imputation relies on the assumption that unobserved determinants of match status
are ignorable conditional on the predictors in the model. This assumption can be stated as:

P (yij = 1|x̃ij) = P (yij = 1|x̃ij , zij), (4)

where zij represents a vector of all other variables that influence match status for a given pair.
The high dimension of x̃ij with rich information at the pair-level, from the BR, and from the HRS,
makes assumption (4) more tenable and facilitates valid inferences for a wide class of subsequent
analyses with the linked data.17 In the next section, we discuss how we use these probabilities to
multiply impute matches.

16Parameter estimates reflect an average of the two reviewer evaluations. Because we found that reviewer disagree-
ment in the training data was highly unlikely, we do not model between-reviewer uncertainty or propagate it in our
MI procedure.

17See, e.g, issues of congeniality in imputation models as noted by Meng (1994), Rubin (1996), and Murray (2018).
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3.3.4 Multiple imputation of matches

Existing probabilistic record linkage procedures which either select the highest probability match or
enforce one-to-one matching in other ways effectively treat the match, conditional on the procedure,
as deterministic. In common with Bayesian record linkage approaches, our procedure captures both
linkage uncertainty as well as the uncertainty in the parameters of the matching model. In the final
step, we propagate uncertainty when selecting candidate matches by using multiple imputation.

Selecting matches for EIN-based cases

When EINs are available for blocking, we normalize the p̂(x̃ij ; β̂
(m)

) to sum to one for each HRS
respondent. For each outcome (employer or establishment match), this provides M different esti-
mates of the match probability for each candidate. Then, for each HRS respondent, we draw one
implicate from each of the M normalized match probability distributions. We do this separately
for employer matches and establishment matches.

Selecting matches for non-EIN-based cases

When EINs are unavailable and blocking is based on location-specific variables, there are many more
candidate matches to consider, and the task of match selection is substantially harder. Consider an
example where an HRS respondent is paired with 10,000 BR candidate matches where one large-
employer candidate is the correct match, and 9,999 small-employer candidates are non-matches.
Suppose the large-employer candidate obtains a normalized match probability of 0.5 while each of
the 9,999 small-employer candidates receive normalized match probabilities of 0.5

9999 . In this example,
random small-employer candidates are as likely to be sampled as the large-employer candidate even
though they are three orders of magnitude less likely to be correct.18

To mitigate the confounding effect of large numbers of candidates, we apply a minimum match
probability threshold to eliminate low-quality matches from consideration. For each of the 10
WBB replications, we estimate this threshold by relying on the sample of cases where EINs yield
deterministic matches between HRS respondents and BR establishments. Although we know the
true match for these respondents, we proceed as if the EIN were unavailable. That is, we block
on location-specific variables and use the match probability estimates to select implicates for each
HRS respondent.19

The top left panel of Figure 1 illustrates how we determine the match probability threshold at
the employer level. The solid circle labeled “Naive” shows match quality without imposing a thresh-
old. Although the entire HRS sample is deemed to be linked, the precision rate—or the share of

18The logistic function is bounded below by zero, which causes the model always to return a non-zero match
probability. The confounding effect of low probability matches on linkage precision is driven by the large numbers of
candidates each of which has a trivially small match probability.

19This sample enumerates all HRS-BR pairs conditional on the blocking variables for a given HRS respondent.
This location-blocked validation sample allows us to evaluate the challenge of selecting the right match from a very
large number of potential matches. It is a conceptually different sample than the training dataset which is a random
sample of pairs.
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HRS respondents that are correctly matched—is extremely low. Moving away from the naive case,
we iterate over progressively higher probability thresholds. For each new choice of threshold, we
re-normalize the estimated match probabilities over the set of candidates that survive the thresh-
old, and sample matches with probability proportional to the re-normalized match probabilities.
Progressively raising the match probability threshold generates movement up and to the left along
the solid blue line. For higher thresholds, the share of HRS respondents for whom none of the
candidate matches survives the threshold increases, and, consequently, the fraction of the sample
that can be linked falls. The solid blue line therefore traces out the realized precision frontier which
is the trade-off between the precision rate and the share of the sample that can be linked. We
define the optimal point on the precision frontier as the threshold which yields a precision rate and
a sample link rate that are each closest to their maximum values of 1, or the top right corner of the
graph. Formally, the optimal probability threshold obtained using parameter estimates from the
m-th WBB replication is:

p̂∗(m) = argmin
p∈[0,1]

((
1− P(x̃ij ; β̂

(m)
, p)
)2

+
(

1− L(x̃ij ; β̂
(m)

, p)
)2)1/2

, (5)

where P and L denote the precision rate and the link rates respectively. The optimal trade-off
is shown with a hollow circle in Figure 1. With respect to the quality of inferences drawn from
non-EIN based linkages, the optimal threshold in Equation (5) places equal weight on controlling
selection bias induced by incomplete linkage as it does on controlling incorrect linkage.

The precision rate we estimate is driven by two factors: the extent to which location-based
blocking variables aid in isolating true matches, and the extent to which the estimated model
assigns high match probabilities to true matches and low match probabilities to true non-matches.
To parse the relative contributions of these factors, we plot the limiting precision frontier, which is
shown in the dashed red line. For each probability threshold, the limiting precision frontier shows
the performance of a hypothetical linkage algorithm that selects the correct match in every instance
where those matches survive the blocking criteria. Because the location-specific blocking variables
sometimes eliminate true matches, the limiting precision frontier is always less than 1.20 The top
panel of Table 4 shows that, at the optimal threshold, the limiting precision rate is about 0.79 while
the realized precision rate is about 0.59. These rates indicate that 21 percentage points of the loss
in precision (1-0.79) is due to blocking error, while 20 percentage points (0.79-0.59) of the loss in
precision is due to inefficiency in the matching model. Thus, blocking errors and model inefficiencies
are each responsible for half of the total loss in precision.21

20What this means is that some true matches in the BR do not share any location-specific blocking variables with
the HRS respondent’s report of their workplace address and phone number, thereby causing false negative errors.
The availability of EINs for blocking would be sufficient to make the limiting precision frontier equal to 1 for any
probability threshold at the employer level.

21In addition to precision, Table 4 shows recall at the naive and optimal thresholds. Recall is the proportion of
correct matches in the BR that are selected. The limiting precision rate equals the limiting recall rate by definition.
The true negative rate (specificity) is trivially small in non-EIN based record linkage because the number of true
negatives is several orders of magnitude larger than the number of true positives. For this reason, we do not consider
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The top right panel of Figure 1 shows that the extremely large number of candidates per HRS
respondent drives the low level of precision attained with unrestricted match selection. For the
average HRS respondent, there are between 104 and 105 candidates from which to select implicates
when we block on location-specific variables. After applying our optimal match probability thresh-
old, however, we lower the average number of candidate matches by three orders of magnitude and
obtain a very large increase in the precision rate. The lower row of Figure 1, and the lower panel of
Table 4 show analogous statistics for the establishment matching model.

For the sub-sample of HRS respondents without EINs, we leave as unmatched respondents for
which all BR match candidates’ estimated match probability is below the optimal threshold. Any
matching procedure, of course, should admit the possibility that there is no reasonable match. Our
procedure handles this possibility systematically based on the estimated matching model, its uncer-
tainty, and a well-specified objective function estimated using validation data. Hence, determining
that a case is a non-match is entirely integrated into the procedure. It does not rely on ancillary
determination, for example, that a case is treated as a non-match if the match probability is below
an externally specified threshold.

3.4 Using the multiply-imputed dataset

Our procedure yields M = 10 multiply imputed employer and establishment links for each HRS
respondent thereby constituting M completed datasets.22 For any statistic generated using im-
puted data, we can combine estimates obtained from each of the M completed data sets using the
formulas in Rubin (1987) to compute the variance owing to sampling uncertainty (within-implicate
variability), and the variance due to linkage uncertainty (between-implicate variability).23 For some
scalar parameter of interest θ, let θ̂m represent estimates derived from the m = 1, . . . ,M completed
data sets. Let σ̂2m represent the variances associated with each of the M parameter estimates. The
multiply imputed estimate of θ is

θ̂ = M−1
M∑
m=1

θ̂m. (6)

The within-implicate variance is

σ̂2W = M−1
M∑
m=1

σ̂2m. (7)

specificity when choosing the optimal threshold.
22When EINs are sufficient to yield a one-to-one BR match for an HRS respondent, record linkage is deterministic

and trivial. We include these cases in each of the M completed datasets.
23In complementary work in a regression context, potential matches can be aggregated using match probability

estimates as weights as in Lahiri and Larsen (2005).
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The between-implicate variance is

σ̂2B = (M − 1)−1
M∑
m=1

(
θ̂m − θ̂

)2
. (8)

The total variance associated with θ̂ is

σ̂2 = σ̂2W + (1 +M−1)σ̂2B. (9)

4 Assessing model fit and linkage accuracy

In this section we implement our record linkage methodology by matching employed respondents
in the 2010 wave of HRS to the BR. We begin by showing selected partial effects of the EN-based
employer and establishment matching models and compare the predictive accuracy of EN-based
models with simpler logit models. We then show statistics that quantify the degree of linkage
uncertainty under different types of blocking schemes. For non-EIN blocked matches, we provide
evidence that our threshold-based procedure reduces bias in imputed employer and establishment
characteristics. Finally, we show characteristics of matched and unmatched respondents in the
CenHRS.

4.1 ML matching model estimates

4.1.1 Partial effects of matching models

Figure 2 shows partial effects of JW scores for name and address on employer (top row) and es-
tablishment (bottom row) match probability. These partial effects plot the numerical derivative
of the estimated model with respect to each JW score, holding all other predictors at their sam-
ple means. Confidence intervals represent posterior uncertainty in the parameters that index the
matching model and are based on WBB replications of the training data. The first two graphs
in each row show partial effects in EIN-blocked training data, while the second two graphs show
partial effects in non-EIN-blocked data. Conditional on having EINs available for blocking, JW
scores for name are informative about employer match status, while JW scores for address are not.
The reverse is true for establishment match status, where isolating the right workplace from a set
of potential workplaces loads more heavily on address information. In the absence of EINs, we see
that JW scores for both name and address are important, although they matter only at very high
levels of similarity.

The partial effects shown in Figure 2 underscore the value of using the EN estimator and
relying on cubic splines with dense interactions to model match status. These higher order terms
capture sharp inflection points in the match likelihood, thereby mimicking non-linearities in reviewer
decisions that would be infeasible to replicate using a simpler parametric approach.
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4.1.2 Predictive performance evaluated using cross-validated ROC curves

We illustrate the predictive performance of our models by showing receiver operating characteristics
(ROC) curves in Figure 3. For probability thresholds ranging from 0 to 1, the ROC curve plots the
true positive rate on the vertical axis against the false positive rate on the horizontal axis. A model
that was only as good as chance in classifying matches would have an ROC curve that ran along
the 45-degree line, while a perfect classifier would have an ROC curve that hugged the left and top
edges of the graph. The area under the curve (the c-statistic) would be 0.5 for the good-as-chance
classifier, while it is 1.0 for a perfect classifier.

The top row of Figure 3 compares employer and establishment match prediction performance
using ROC metrics in training data that are blocked on EINs. The lower row shows analogous ROC
metrics for training data that are blocked using location-specific variables (i.e. in the absence of
EINs). In each plot the blue curve shows the performance of the EN estimator with the full suite
of predictors, while the red curve shows the performance of traditional logistic regression that uses
only JW scores for name and address.24 Each curve is constructed using 10-fold cross validation to
estimate out-of-sample fit. In all four settings we see that EN outperforms logit, although the gain
is not as pronounced for establishment matching when EINs are available.

4.2 Evaluating the linkage

4.2.1 Quantifying match uncertainty for probabilistically linked respondents

Table 5 provides a simple way to summarize the degree of linkage uncertainty in our probabilistically
matched sub-samples. The upper panel shows statistics for employer linkage whereas the lower panel
shows statistics for establishment linkage. In each panel, we divide respondents into four different
groups. The first group, shown in the first column, refers to respondents who are probabilistically
matched using EINs. The next set of columns shows respondents who are probabilistically matched
without EINs using three different thresholds: the naive case of no threshold, the optimally-chosen
threshold, and an extreme threshold that delivers a precision rate of 80 percent.25

The first row of the table shows the fraction of HRS respondents for which a single employer
populated all 10 implicates; that is, there is no uncertainty about the linkage. Subsequent rows
show the share of implicates associated with successively higher numbers of unique matches. Cases
with 4 or more unique matches are binned together. With EIN-based linkage almost 90 percent of
respondents have no linkage uncertainty. In the absence of EINs, unrestricted sampling generates
a very high level of uncertainty where nearly 80 percent of respondents are matched to 10 different
employers. Applying thresholds, however, leads to a sharp reduction in linkage uncertainty, mov-
ing from what is effectively random matching to near-EIN levels of match quality when extreme
thresholds are applied.

24The partial effects shown average across 10 WBB replications of the training data. 95 percent confidence intervals
reflect posterior uncertainty in the parameters that index the matching models.

25Recall from Figure 1 that 80 percent precision is the approximate upper bound of what the location-based blocking
variables and matching models can attain.
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The statistics in the lower panel of the figure paint a qualitatively similar picture. Unsurprisingly,
the overall degree of establishment-level linkage uncertainty is higher because of the added difficulty
of finding the correct location in addition to the correct employer. With EINs, we see approximately
45 percent of respondents have no linkage uncertainty at the establishment level, only about half of
what we attain at the employer level. Nevertheless, the gains in linkage accuracy are very substantial
once we use thresholds as shown in the non-EIN columns.

The statistics in Table 5 summarize the degree of linkage uncertainty in the CenHRS and quantify
the extent to which it can be mitigated using principled, data-driven, techniques. Researchers
might not be happy with this uncertainty, but making it explicit is clearly superior to choosing a
deterministic procedure and proceeding as if it were exact.

4.2.2 Using thresholds reduces bias in imputed variables

In the previous section we showed how we used probability thresholds to improve linkage precision
when EINs were unavailable. With an objective function to select optimal thresholds that placed
equal weight on precision and the linkage rate, we obtained a precision level of about 0.6. Although
this is several times larger than what we would find without thresholds, it is still far from 1 which
leaves open the possibility that employer- and establishment-level variables may be biased.

In top panel of Figure 4 we show the relationship between MI-log employer size from the BR and
true log employer size in our validation sample. We divide the true log employer size distribution
into 20 equally sized bins and plot the bin-level mean of the true value on the horizontal axis against
the bin-level mean of the MI value on the vertical axis. An unbiased imputation procedure would
accurately fit each ventile of unobserved variable and therefore lie along the 45-degree line. We
see that non-EIN-based linkage without thresholds generates biased imputations across the entire
employer size distribution and is therefore far from ideal. In contrast, non-EIN-based linkage with
an optimally chosen threshold accurately imputes the missing variable of interest.

In the lower panel of Figure 4, we conduct the same exercise but with log establishment size
as the target variable. As with the employer-level imputations, non-EIN-based linkage without
thresholds is biased across the entire establishment size distribution. In contrast, MI with an
optimally chosen threshold is accurate in the lower half of the establishment size distribution but
understates true establishment size at extremely large workplaces. Although the confidence intervals
widen substantially in the right tail, MI-log establishment size is understated which is driven in
part by the difficulty of finding extremely large establishments. In some instances, like public
school districts or other types of public-sector employers, BR establishment data can represent
aggregations of workplaces across different locations, so the meaning and use of the establishment
match is less clear. Matches at the employer level are not subject to this problem.

4.2.3 Individual characteristics for matched and unmatched respondents

Table 6 shows selected characteristics of employed HRS respondents in the 2010 wave. The first
column shows statistics for the full sample while the next four columns show statistics for linked
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and non-linked sub-samples at the employer- and establishment-level respectively. Because the
overall linkage rate is nearly 90 percent at both the employer and establishment levels, success-
fully linked sub-samples are broadly representative of the full sample of respondents. There are,
however, systematic differences between the characteristics of linked and unlinked respondents that
are informative about reasons for non-linkage. Moving down the rows of the table, one sees that
unlinked respondents are less likely to be White, and more likely to be Hispanic and foreign born.
They have, on average, about one less year of education, 10-25 percent lower annual earnings, and
between 2 and 3 years less in tenure with their employer relative to linked respondents. Markedly,
while 16-20 percent of linked respondents are employed in the public sector, the same statistic for
unlinked respondents is 3 percent. Finally, looking at the paradata, one sees that although there
are no differences in the mode of interview, linked respondents are more likely to answer the survey
instrument in English. Combined with the higher Hispanic and foreign born share, this statistic
indicates that immigrants are likely to be over-represented in the non-linked sub-sample.

The data presented in Table 6 point at two potential drivers for non-random linkage in the
CenHRS. First, it is possible that non-linked respondents simply have less identifying information
about their employers and therefore provide lower quality data to the HRS. Second, it is possible
that these respondents intentionally withhold identifying information. The second possibility is con-
sistent with the fact that non-linked respondents are non-consenters to SSA linkages by construction
and may therefore prefer to maintain a higher level of anonymity relative to consenters.

5 Application: The wage-size gradient

Using both household and employer-level survey data as well as administrative employer-employee
linked data, a number of studies have established that larger employers pay observationally equiva-
lent workers higher wages (see, e.g., Brown and Medoff (1989), Oi and Idson (1999), and Bloom et al.
(2018)). In this section, we discuss an application of the CenHRS by re-examining the relationship
between wages and establishment size. In particular, our approach reveals that non-sampling er-
rors in survey data are correlated with workplace characteristics and would remain hidden without
constructing linkages to administrative data.

5.1 Wage-size gradient in household-survey data

Consider the following statistical model for the relationship between worker wages and establishment
size in the cross section

wij = γ0 + γ1s
∗
ij + vij , (10)

where wij is the log hourly wage of worker i employed at establishment j, s∗ij is an error-free measure
of the log of worker i′s establishment’s size, and vij is an error term that captures other factors
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influencing worker wages.26 The HRS provides household survey-based measures of hourly wages,
wij , as well as establishment size. sij is often missing and is potentially error-ridden when it is
reported. Survey-based measures of log establishment size can be written as

sij = s∗ij + uij . (11)

Under the classical measurement error model, discrepancies in survey reports are not systematically
related with the underlying variable of interest implying that Cov(s∗ij , uij) = 0. Furthermore,
reporting errors are not systematically related to the error term in equation (11) implying that
Cov(uij,vij) = 0. Given this framework, it is well known that the presence of added noise in the
explanatory variable attenuates the ordinary least squares (OLS) estimate of γ1. Alternatively, if
discrepancies in survey reports are systematically related to the underlying variable of interest—i.e.
if the measurement error is non-classical—then the OLS estimate of γ1 may be either amplified or
attenuated depending on the sign of Cov(s∗ij , uij) and its magnitude relative to V (uij).

In the following subsection, we use our MI measures of establishment size to assess the relative
importance of survey non-response and measurement error on the wage-size gradient and determine
whether the measurement error is classical or non-classical.

5.2 Using MI variables from administrative data to assess bias in the wage-size
gradient

Define ŝ∗(m)
ij as the m-th implicate of log establishment size obtained using our MI-based procedure.

We can write the true value of log establishment size under our imputation procedure as

s∗ij = ŝ
∗(m)
ij + η

(m)
ij . (12)

Ignorability as posited in Equation (4) implies the following moment conditions:

Cov(ŝ
∗(m)
ij , η

(m)
ij ) = 0 (13)

Cov(ŝ
∗(m)
ij , vij) = 0 (14)

i.e., the imputed variable is uncorrelated with imputation error, η(m)
ij , as well as the error in the

regression model, vij .
26Although we ignore control variables when writing Equation (10), our empirical implementation includes control

variables, which we describe in detail below. Control variables may be subject to measurement errors of their own,
which makes the bias in the variable of interest hard to characterize. We ignore the added effect of measurement
errors in the control variables, to the extent they exist, in the discussion that follows.
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The γ̂1 estimated using the m-th implicate of establishment size by OLS is

γ̂
(m)
1,MI =

Cov(ŝ
∗(m)
ij , γ0 + γ1s

∗
ij + vij)

V (ŝ
∗(m)
ij )

+ op(1)

= γ1
Cov(ŝ

∗(m)
ij , s∗ij)

V (ŝ
∗(m)
ij )

+ op(1), (15)

where the second expression follows from Equation (14). Finally, from Equations (12) and (13) it
follows that Cov(ŝ

∗(m)
ij , s∗ij) = V (ŝ

∗(m)
ij ) which implies that the estimate of γ̂1 based on MI-based

variables is consistent.
Having shown the conditions under which estimates of γ1 obtained from MI-based measures are

consistent, we can quantify the relative importance of selective nonresponse and measurement error
in the wage-size gradient. The survey-based estimate of γ1 can be written as

γ̂1,S = γ1 + MEB + NRB + op(1), (16)

where MEB and NRB are biases due to measurement error and selective nonresponse, respectively. The
wage-size gradient using MI measures, but restricted to the sample of respondents who do report
establishment size, can be written as

γ̂1,MI|R = γ1 + NRB + op(1). (17)

We can then decompose the respective biases using Equations (15), (16), and (17) as

γ̂1,S − γ̂1,MI|R = MEB + op(1) (18)

γ̂1,MI|R − γ̂1,MI = NRB + op(1). (19)

In the equations above, γ̂1,MI|R and γ̂1,MI average across the M parameter estimates obtained from
each of the completed datasets.

Table 7 shows estimates of γ̂1,S, γ̂1,MI|R, and γ̂1,MI. The top panel uses the full sample of linked
data, which combines deterministic links and probabilistic links, while the lower panel is restricted
to the sample which is deterministically linked. Standard errors for MI-based estimates jointly
account for within- and between-implicate variability using Rubin’s combining formulas. To control
for variation in individual characteristics that affect hourly wages, all the regressions models we
estimate condition on age, gender, race, Hispanic ethnicity, partnered/coupled status, years of
education, tenure, hours worked per week, weeks worked per year, one-digit occupation fixed effects,
and one-digit industry fixed effects. We focus on the variable of interest imputed from the BR and
do not report coefficients for these control variables in the table.

We see that γ̂1,S is significantly larger than γ̂1,MI|R in both the full sample and the perfectly
matched sub-sample. Amplification bias in the survey-based coefficient is consistent with HRS
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respondents’ reports of workplace size being subject to non-classical measurement error. Moving
next to compare γ̂1,MI|R with γ̂1,MI, we see that selective non-response weakly contributes to ampli-
fication bias, as the estimated coefficient either remains unchanged or shrinks when moving from
the non-missing self-report sample to the full sample. For each pair of coefficients, we see the same
qualitative pattern play out in the sample of all linked respondents and also in the perfectly matched
sub-sample, thereby indicating that our findings are not merely artifacts of the linkage process. In
the broader sample of all linked respondents, non-classical measurement error is responsible for all
of the amplification bias. In the perfectly matched sub-sample, non-classical measurement error and
non-response are each responsible for about 50 percent of the amplification bias.

Figure 5 illustrates the nature of non-sampling errors in the full sample (left column) and the
perfectly matched sub-sample (right column). In each graph we divide MI-log establishment size
from the BR into 20 equally-sized bins and plot the bin-level mean on the horizontal axis. In
the top row of the figure, we plot the bin-level mean of log establishment size reported by HRS
respondents on the vertical axis. The full sample of linked respondents is shown in the left panel,
and the deterministically linked sub-sample in the right panel. The bin scatter plot shows that
measurement error in survey reports is negatively correlated with the true values: That is, workers
at the smallest establishments overstate size, and workers at larger establishments understate size.
In the lower tail, differences between survey and administrative data could reflect seasonal volatility
in small establishments.27 In the upper tail, where errors are more pronounced and size is less
volatile over calendar months, the pattern is consistent with the idea that individual employees may
be unaware of the full scale of operations and may therefore underestimate workplace size when
answering the survey. With respect to non-response, we see that it is largely uncorrelated with size
for the broader sample of all linked respondents, but negatively correlated with size in the perfectly
matched sub-sample.

The estimates we report here provide new evidence on how household survey responses about
workplace characteristics are selectively misreported, or not reported at all. With linkages to ad-
ministrative information on workplaces in the CenHRS, we are able to characterize measurement
and non-response errors that are not observed in other household survey datasets.

6 Conclusion

This paper describes the construction of a new dataset, the CenHRS, that is obtained by linking
a household-level survey to an establishment-level frame in the absence of unique identifiers. The
between-frame linkage task that we undertake is complicated by skewness in the distribution of
employment across firms that makes matching much more difficult. To address these issues, we use
probabilistic linkage based on supervised machine learning models to estimate the probability that
specific employers and establishments in the BR are matches for individuals in the HRS. Our models
rely on a rich set of predictors and a high degree of flexibility to replicate important non-linearities

27BR size information is based on payroll tax information reported in March, while three-quarters of HRS interviews
are conducted in the summer months between May and September.
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inherent in human-reviewed training data. Using probabilities estimated from the models, we employ
multiple imputation to characterize uncertainty in the linkage. To further refine the set of candidate
matches, we estimate probability thresholds that provide the best trade-off between precision and the
sample linkage rate. Eliminating candidate matches that fail to meet these thresholds dramatically
reduces both linkage uncertainty as well as bias in the imputed variables. We use these newly linked
data to provide new evidence that reporting errors and non-response propensity vary systematically
with workplace characteristics.

Beyond issues related to record linkage, the CenHRS opens new avenues for research by extending
pre-existing measures of activities, experiences, and outcomes for individuals from their family and
home context to the work context. These new measures will provide data necessary for a more
comprehensive understanding of the determinants of health and well-being over the lifespan.
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Figure 1: Precision rates in non-EIN-based record linkage
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Notes: This figure shows the precision rate (i.e. the fraction of HRS respondents correctly matched) attained under different probability thresholds in a validation
sample. The realized precision rate is the rate achieved by the EN estimator for different probability thresholds. The limiting precision rate is the upper bound on
precision attained by a hypothetical estimator that selects all available true matches after blocking is complete. Statistics are averages across 10 WBB replications.
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Figure 2: Selected partial effects of the matching models

Notes: This figure shows partial effects of the matching models for a given predictor holding all other predictors at their mean. The vertical axes have different
scales in each graph. The top row shows the effect of Jaro-Winkler (JW) scores for name and address similarity between the HRS and BR on the probability of
employer match status, separately for EIN and non-EIN blocked training data. The bottom row shows the effect of the same predictors on establishment match
status, separately for EIN and non-EIN blocked training data. 95 percent confidence intervals reflect posterior uncertainty in the parameters of the matching
models and are estimated using Bayesian bootstrap replications of the training data.
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Figure 3: Receiver operating characteristic curves of the matching models

Notes: Receiver operating characteristic (ROC) estimates show out-of-sample predictive performance of each model, which is estimated using 10-fold cross-
validation. EN represents the Elastic Net estimator which uses the full suite of predictors, while Logit is conventional logistic regression estimated using only
Jaro-Winkler scores for name and address. c-statistics show the area under each curve which ranges from a minimum of 0.5 (random classifer) to a maximum
of 1 (perfect classifier). 95 percent confidence intervals reflect posterior uncertainty in the parameters of the matching models and are estimated using Bayesian
bootstrap replications of the training data.
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Figure 4: Reducing imputation bias by applying optimally chosen thresholds

0 2 4 6 8 10 12
True log employer size

0

2

4

6

8

10

12

M
I-

lo
g 

em
pl

oy
er

 s
iz

e

MI with no threshold

0 2 4 6 8 10 12
True log employer size

0

2

4

6

8

10

12

M
I-

lo
g 

em
pl

oy
er

 s
iz

e

MI with optimal threshold

0 2 4 6 8 10 12
True log establishment size

0

2

4

6

8

10

12

M
I-

lo
g 

es
ta

bl
is

hm
en

t s
iz

e

MI with no threshold

0 2 4 6 8 10 12
True log establishment size

0

2

4

6

8

10

12

M
I-

lo
g 

es
ta

bl
is

hm
en

t s
iz

e

MI with optimal threshold

Notes: This figure shows the relationship between true log size and multiply-imputed log size at the employer and establishment levels for naively and optimally
chosen implicates in a validation sample. 95 percent confidence intervals for MI measures jointly account for within- and between-implicate variability using
Rubin’s combining formulas. Some cells are suppressed for statistical disclosure limitation.
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Figure 5: Non-sampling errors in HRS reports of establishment size
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Notes: This figure shows the relationship between log establishment size from the Business Register and self-reported log establishment size from the HRS in
the top row, and item non-response rates about establishment size in the HRS in the bottom row.
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Table 1: Types of record linkage in the 2010 wave of the CenHRS

HRS respondents Share of respondents BR candidates per HRS respondent
(average number of establishments)

Deterministic match, EIN available 2500 0.415 1
Probabilistic match, EIN available 1800 0.295 436
Probabilistic match, EIN not available 1800 0.291 30,050

Notes: This table shows the record linkage strategy used for different sub-samples of working HRS respondents in the 2010 wave.
Shares may not sum to 1 because each cell is independently rounded. In cases where EINs are not available, the average number of
BR candidates per HRS respondent is based on blocking a validation sample (i.e. where HRS respondents can be deterministically
matched to BR establishments) using location-specific variables.

Table 2: Reviewer’s information set

Source
Review variable HRS BR
Employer’s name, establishment address, phone number X X
Whether employer is single unit or multi unit X
Employer and establishment size X X
Employer’s industry description X X
Respondent’s occupation description X
Provision of health insurance and/or retirement plan X
Number of EINs in respondent’s earnings record X

Notes: This table shows the types of variables that reviewers observe when
determining match status for a HRS-BR pair in the training datasets. As shown
in the source column, some variables are available in both the HRS and the BR,
while others are available in only one of the two sources.
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Table 3: Predictors in the matching models

Predictor Description
Pair level

Cubic spline Jaro-Winkler score name Similarity between HRS and BR name
Cubic spline Jaro-Winkler score street address Similarity between HRS and BR address
Jaro-Winkler score city Similarity between HRS and BR city
Cubic spline establishment’s share of employment within blocking variable Concentration of employment across candidate establishments
Cubic spline EIN share of respondent’s total annual earnings Concentration of earnings across candidate employers
Agreement on 7 digit and 10 digit phone number Agreement status binary variable
Agreement on 3-, 4-, 5-digit zip code, city-state Agreement status binary variable
Agreement on one-digit industry code Agreement status binary variable
Agreement on employer size class Agreement status binary variable

BR only
Log employer size
Whether single-unit or mult-unit employer

HRS only
Age, gender, race, ethnicity, nativity, years of schooling, marital status
Survey interview mode and language
Log hourly real wage, tenure, weeks worked/year, hours worked/week
Provision of health insurance, provision of retirement plan
Two digit occupation, one digit industry

Notes: This table shows the types of predictors used in the Elastic Net matching models. Pair-level predictors are based on information that is specific
to the HRS-BR pair. BR-only predictors are derived purely from the BR, and HRS-only predictors are derived purely from the HRS. Cubic splines
for name and address Jaro-Winkler (JW) scores have 10 cut points each. The cubic splines for block share and earnings share have 3 cut points each.
Earnings shares across jobs cannot be computed for respondents who do not consent to SSA linkage. For respondents who do not consent to linkage,
we use cubic spline of log BR size with 3 cut points. All cubic spline variables are fully interacted with each other. After including interaction terms
and indicator variables to account for missing values of HRS variables, there are a total of 9,200 predictors for the EIN and non-EIN based models.
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Table 4: Precision and recall for non-EIN-based record linkage

Employer-level linkage
Probability threshold Proportion linked Realized precision Realized recall Limiting precision BR candidates per HRS respondent

(average number of establishments)
Naive 0 1 0.026 0.032 0.824 30,050
Optimal 0.39 0.648 0.587 0.745 0.788 52.3

Establishment-level linkage
Probability threshold Proportion linked Realized precision Realized recall Limiting precision BR candidates per HRS respondent

(average number of establishments)
Naive 0 1 0.034 0.042 0.824 30,050
Optimal 0.095 0.661 0.569 0.786 0.724 146.8

Notes: This table shows linkage performance without EINs under the naive case where no probability threshold is applied and the case where the optimally-
chosen probability threshold is applied. The statistics shown are computed in a validation dataset where HRS respondents can be deterministically matched to
BR establishments. The top panel shows statistics for employer-level linkage, and the lower panel shows statistics for establishment-level linkage. Precision is the
proportion of HRS respondents who are correctly matched. Recall is the proportion of correct matches in the BR that are selected. Limiting precision equals
limiting recall by definition. Statistics are averages across 10 WBB replications.
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Table 5: Concentration of multiple implicates

Employer-level linkage
Non-EIN-based

N (unique implicates) EIN-based No threshold Optimal threshold Extreme threshold
1 0.89 0.1 0.44 0.83
2 0.09 0.05 0.23 0.13
3 0.01 0.05 0.14 0.03

4-10 0.01 0.79 0.19 0.02
N (respondents) 1800 1800 1200 350

Establishment-level linkage
Non-EIN-based

N (unique implicates) EIN-based No threshold Optimal threshold Extreme threshold
1 0.44 0.01 0.27 0.69
2 0.17 0.01 0.19 0.14
3 0.06 0.01 0.13 0.08

4-10 0.32 0.97 0.41 0.1
N (respondents) 1800 1800 1100 300
Notes: This table shows the concentration of implicates across HRS respondents. For non-EIN-based
linkage, the table shows concentration of implicates across respondents for three different thresholds: no
threshold (or the naive case), the optimally-chosen threshold, and an extreme threshold which is associated
with a precision rate of 80 percent in the validation data.

Table 6: HRS respondent characteristics by linkage status

Employer Establishment
Full sample Linked Non-linked Linked Non-linked

Age 57.61 57.63 56.92 57.72 56.54
Male 0.45 0.44 0.48 0.44 0.50
White 0.67 0.68 0.57 0.68 0.59
Black 0.22 0.22 0.24 0.22 0.23
Other race 0.11 0.10 0.19 0.10 0.17
Hispanic 0.15 0.14 0.26 0.14 0.25
Partnered/coupled 0.73 0.72 0.73 0.72 0.73
Years of schooling 13.24 13.43 12.06 13.45 12.11
Native born 0.85 0.87 0.69 0.86 0.73
Annual earnings ($) 41,800 43,160 33,330 42,620 37,660
Hours worked per week 38.14 38.34 36.47 38.24 37.36
Weeks worked per year 48.77 48.95 47.04 48.81 47.98
Tenure (years) 11.22 11.79 8.23 11.62 9.24
Public sector worker 0.17 0.21 0.03 0.21 0.03
Interviewed in English 0.93 0.94 0.81 0.94 0.84
Interviewed in person 0.74 0.75 0.76 0.74 0.76
N 6100 5600 750 5400 850

Notes: This table shows HRS respondent characteristics for the full sample of working re-
spondents in the 2010 wave, and for the linked and non-linked sub-samples at the employer and
establishment level. Annual earnings are in 2010 dollars. Case counts are independently rounded.
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Table 7: Log establishment size effect in log wage

A: All linked respondents
MI-size from the BR

HRS self-report of size (γ̂1,S) Non-missing self report sample (γ̂1,MI|R) Full sample (γ̂1,MI)
0.042 0.019 0.019
(0.005) (0.004) (0.003)

N 2700 2700 4400
B: Deterministically linked respondents

MI-size from the BR
HRS self-report of size (γ̂1,S) Non-missing self report sample (γ̂1,MI|R) Full sample (γ̂1,MI)

0.044 0.033 0.023
(0.009) (0.006) (0.005)

N 850 850 1800
Notes: This table shows the effect of log establishment size on log wages. Regression samples are restricted to
observations where HRS respondents reported hourly wages or provided sufficient information to infer hourly wages
from reports of total earnings and total hours. All regression models include controls for weekly hours, annual
weeks, tenure, years of schooling, partnered/coupled status, nativity, gender, race, Hispanic ethnicity, age, one-digit
occupation fixed effects, and one-digit industry fixed effects.

33



Appendix A Constructing the training data set

Our training samples are composed of HRS-BR pairs generated by blocking the 1998 and 2004
waves of the HRS with the BR. The first sample blocks on EIN and is used to fit probabilistic
matching models for cases where EINs are available, while the second sample blocks on 10-digit
phone number, 3-digit zip code, telephone area code, and city-state and is used to fit probabilistic
matching models for cases where EINs are unavailable. We choose 1998 and 2004 to create the
training samples for two reasons. First, these were years in which the HRS drew fresh cohorts of
survey respondents. Second, the file structure of the BR changed in substantive ways in 2002. As
such, using HRS cohorts before and after 2002 to estimate the matching models allows us to account
for unobserved variation in the quality of data drawn from the BR.

Simple random sampling of pairs for human review would produce very few true matches and
therefore limit the predictive performance of our models. Instead, we follow a stratified random
sampling approach to draw candidate matches (see, e.g., Christen (2012)). We begin by computing
Jaro-Winkler (JW) scores for name and address similarity for each pair. We then divide the JW
scores for name and address into 4 bins each, with grid points spaced closer together at the right
tail of the respective JW score distributions. This binning exercise defines 16 strata from which
we draw equally-sized samples to obtain a total sample size of NT ≈ 1000 pairs. Because the bins
are concentrated at the top of the JW name and address score distribution, this stratified sampling
methodology substantially increases the share of true matches in the training data set relative to a
simple random sample.

Appendix B Model selection

Our training data sets consist of approximately 2000 observations each, which is substantially smaller
than the number of predictors available to estimate match probabilities. To solve this dimensionality
problem and, more importantly, to avoid over-fitting our model, we use ML tools to aid in prediction.
While a complex model with many variables and interactions has the potential of reducing in-sample
(training) errors substantially, this improvement is misleading because it considers the wrong model-
fit criterion. To ensure that the model generalizes well, we consider out-of-sample (test) error which
we estimate using 10-fold cross validation.

In our setting, the complexity of the model is indexed by the number of predictors. Reducing
model complexity by shrinking the number of predictors increases the bias component of the test
error, but has the potential to reduce the variance component substantially. In order to obtain a
model with the optimal degree of complexity, we employ the Elastic Net (EN) shrinkage estimator.
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The EN estimator solves the constrained maximum likelihood problem posed in (20):

max
β∈Rq

2NT∑
l=1

w
(m)
l

(
yl log

(
exp(x̃′lβ)

1 + exp(x̃′lβ)

)
+ (1− yl) log

(
1

1 + exp(x̃′lβ)

))

st:
q∑
p=1

β2p ≤ t1,
q∑
p=1

|βp| ≤ t2, (20)

where l indexes observations in the training dataset, and p indexes predictors. In (20), the typical
maximum likelihood problem is supplemented with two constraints, each of which constitutes a
tuning parameter for the estimator. Together, these tuning parameters control the level of model
complexity: t1, as in Ridge Regression, sets a threshold on the sum of squared values of the coeffi-
cients. The Ridge penalty term has the effect of controlling the variance component of test error by
preventing any one predictor from exhibiting too strong of an effect on the outcome. This penalty
is important when some predictors are correlated. t2, as in the LASSO, sets a threshold on the sum
of the absolute values of the coefficients. When this second constraint binds, some of the coefficients
are set exactly to zero, thereby reducing the complexity of the model.

To find the optimal model, we re-cast the EN estimator in Lagrangian form, as shown in equation
(21). The two tuning parameters discussed above are replaced by a Lagrange multiplier, λ ∈ R+,
and a parameter α ∈ [0, 1] that controls the degree of mixing between the Ridge constraint and the
LASSO constraint:
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)
(21)

We obtain prediction models by implementing the EN estimator using the glmnet package in R.
This particular implementation of the EN estimator takes a given value of α and finds the value of
λ that delivers the lowest out-of-sample (test) deviance, which is defined as:

− 2
10∑
f=1

∑
l∈f

`
(
ylf , x̃lf ; β̂f ′(α, λ̂)

)
. (22)

In Equation (22), f indexes 10 equally-sized random partitions (folds) of the data. `(·) represents
the log likelihood as defined in Equation (21). x̃lf is the vector of predictors for observation l in
fold f , β̂f ′(α, λ̂) is the parameter vector estimated using observations on all folds except for fold f ,
and λ̂ is the test deviance-minimizing choice of λ. To obtain the best prediction model, we perform
a grid search by iterating α from 0.05 to 0.95 in 0.05-unit increments and select the model with the
lowest test deviance across all the values of α.
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